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Abstract

Introduction—To estimate occupational exposures to electromagnetic fields (EMF) for the 

INTEROCC study, a database of source-based measurements extracted from published and 

unpublished literature resources had been previously constructed. The aim of the current work was 

to summarize these measurements into a source-exposure matrix (SEM), accounting for their 

quality and relevance.

Methods—A novel methodology for combining available measurements was developed, based 

on order statistics and log-normal distribution characteristics. Arithmetic and geometric means, 

and estimates of variability and maximum exposure were calculated by EMF source, frequency 

band and dosimetry type. Mean estimates were weighted by our confidence on the pooled 

measurements.
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Results—The SEM contains confidence-weighted mean and maximum estimates for 312 EMF 

exposure sources (from 0 Hz to 300 GHz). Operator position geometric mean electric field levels 

for RF sources ranged between 0.8 V/m (plasma etcher) and 320 V/m (RF sealer), while magnetic 

fields ranged from 0.02 A/m (speed radar) to 0.6 A/m (microwave heating). For ELF sources, 

electric fields ranged between 0.2 V/m (electric forklift) and 11,700 V/m (HVTL-hotsticks), while 

magnetic fields ranged between 0.14 μT (visual display terminals) and 17 μT (TIG welding).

Conclusion—The methodology developed allowed the construction of the first EMF-SEM and 

may be used to summarize similar exposure data for other physical or chemical agents.

Keywords

source-exposure matrix; electromagnetic fields; occupational exposure assessment; log-normal 
distribution; semi-empiric exposure estimation

INTRODUCTION

Population-based case-control studies require the use of retrospective exposure assessment 

tools based on quality historical exposure data. However, the collection and analysis of these 

data is difficult, since measurements for some environmental and occupational agents, such 

as electromagnetic fields (EMF), are not systematically collected and, when available, are 

almost exclusively reported as aggregated and summarized results. Past efforts analysed and 

combined available exposure data in the literature for different agents1–8. They involved 

estimation of specific parameters from scarce measurements, using a limited number of 

equations based on the assumption of data log-normality. Monte-Carlo simulations1,2,7 were 

also used to recreate exposures when measurement data were sparse.

Measurements collected from the literature have been used in the construction of job-

exposure matrices (JEMs), either alone or in combination with expert judgments. For EMF, 

JEMs have been created only for extremely low frequency (ELF) magnetic fields9–12 and 

electric shocks13,14. However, a worker’s job title is insufficient to explain between-subject 

variability since exposure levels are influenced by other characteristics, such as industry, 

worker’s tasks, specific equipment used or physical configuration of the workplace15,16. 

Using the JEM’s mean exposure for all subjects in an occupation introduces Berkson error 

into the risk estimate (i.e. error relative to risks from each subject’s exposure), reducing the 

study’s power to detect true hazards17 and potentially biasing risk estimates18. Some 

authors16 suggested the use of source-based measurements and questionnaires to improve 

EMF exposure assessment, allowing for a more individualized exposure estimation.

The INTEROCC EMF measurement database

As part of the INTEROCC/INTERPHONE study of brain cancer, detailed information was 

collected for each job held by the study participants through a questionnaire on work 

organization (e.g. manual/automated), tasks (e.g. welding) and sources of exposure (e.g. type 

of equipment), divided in twelve occupational sections to take industrial activity into 

account. The aim was to combine the interview data and EMF exposure measurements from 

the literature for each source and/or task to estimate individual cumulative exposures to 

electric fields (E) and magnetic fields (B for lower frequencies and H for higher 
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frequencies21) in four frequency bands: 0 Hz for static magnetic fields (SMF), 3–3,000 Hz 

for extremely low frequencies (ELF), 3 kHz – 10 MHz for intermediate frequencies (IF) and 

10 MHz – 300 GHz for radio frequencies (RF).

Measurements for all the EMF sources identified through the study questionnaire (i.e. over 3 

000 records) were compiled into an occupational exposure measurement database (OEMD). 

The measurements collected were abstracted from published and unpublished resources (i.e. 

95 articles and technical reports), which were assessed based on their quality and relevance 

for our study. The OEMD was augmented with estimates of exposure range for 39 RF 

sources without available measurements in the literature, obtained from expert judgments. In 

total, exposures were compiled for 312 EMF sources commonly found in workplaces, 

covering the entire EMF frequency range. In this database, an EMF source refers to a 

specific piece of equipment and/or task which can lead to EMF exposure. Details of the 

construction and content of the OEMD were recently published19 and public access to this 

database is available at www.crealradiation.com/index.php/en/databases.

EMF data are usually reported using a variety of summary statistics, from arithmetic and 

geometric means (AM & GM), minimum (Min) and maximum (Max), only maximum, or 

values below or above the EMF meter’s limits of detection, i.e. outside its dynamic range 

(ODR). Several dosimetry types can be used when sampling EMF (i.e. personal, operator 

position or spot). Personal measurements are obtained with dosimeters by collecting 

exposures over an hour, a shift, or longer. Spot measurements are made at different distances 

from the source over shorter periods of time. Spot measurements performed at the usual 

worker’s position are called operator position measurements20. The analysis and 

combination of these data entail several difficulties, as highlighted in similar efforts3,4,7. 

Since measurements are collected for different purposes and following different sampling 

strategies, quality and relevance for epidemiological studies also needs to be considered.

The aim of this article is to describe the methodology developed to combine the OEMD data 

into a source-exposure matrix (SEM), that contain representative exposure estimates and 

their within-source variability for all EMF sources identified in the study.

METHODS

The methodology developed has two main stages: 1) calculation of semi-empiric estimates 

of missing summary statistics in OEMD studies; and 2) pooling of reported and/or estimated 

summary statistics. Pooled statistics were weighted by semi-quantitative ratings from expert 

confidence evaluations of whether a study’s measurement data are accurate and 

representative of long-term brain exposure.

Semi-empiric methods for estimating missing summary statistics

Each OEMD record for a given EMF source may contain values for combinations of Min, 
Max, AM, GM, N (sample size) and the minimum or maximum ODR limit for a specific 

frequency band and dosimetry type. To construct the SEM, we estimated AM, GM, SD and 

GSD for all EMF sources using these varied metrics. Our approach assumed that EMF 

exposure, like other environmental and occupational agents21–23, is log-normally distributed. 
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The summary statistics from log-normal data obey several mathematical relationships (see 

Appendix), including this equation for the standard normal quantile z of the maximum data 

point:

(1)

and the analogous equation for zMin. Our second assumption was that zMax and zMin are 

symmetric about zero:

(2)

Equation 1 and other relationships24 between the summary statistics AM, SD, GM, GSD, of 

a log-normal distribution, and parameters zMax, Min and Max, were used to derive 

estimation formulas for missing statisticsfrom the available values in the OEMD (Table 1). 

For OEMD records with values for N (22% of the total), we further assumed that zMin and 

zMax were equal to their expected normal order statistics25,26, which we call EN[zMin] and 

EN[zMax], since the expectation values of the extreme normal quantiles also have the 

symmetric quantile property22.

With values for EN[zMax] obtained from a numerical algorithm25, these log-normal 

relationships could be solved exactly to obtain all summary statistics for OEMD records 

with 3 or more parameter values (estimation methods 1 and 2 in Table 1). When less 

information was available, solutions for the desired summary statistics were made possible 

by replacing the unknown GSD with its central tendency, , calculated from an OEMD 

sub-set with enough data for exact calculations using these two methods. This semi-empiric 

parameter plus the above approximations resulted in the formulas for estimation methods 3 – 

5 in Table 1. For OEMD records without N, we replaced EN[zMax] with a semi-empiric 

parameter, , which equals the central tendency of EN[zMax] from all OEMD records 

with values for N. With this substitution plus the symmetric quantile relationship (eq.2), 

formulas similar to those in Table 1 were derived (see Appendix). OEMD records with N=1 

were considered to equal their AM and GM, while SD and GSD are undetermined.

When ODR measurements were reported, providing their corresponding limits of detection, 

they were entered into OEMD as ODRMin or ODRMax, with the corresponding Max or 

Min. For these entries, we estimated the desired statistics with models for the extreme 

exposures outside the dynamic range:

(3a)

(3b)
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The correction factors kunder and kover were estimated semi-empiricly from a sub-set of 

ODR measurements that also reported the AM, so that:

(4a)

(4b)

where the parameter  uses the central tendency , previously described. 

The central tendencies  and  were then used to obtain the desired statistics with 

the formulas in Table 2 (derived in the Appendix).

The distributional characteristics of the data sets used to compute the semi-empiric 

parameters , and  were examined to decide the best measure of their 

central tendency. Overall, data used for estimation of these semi-empiric statistics was not 

normally distributed; hence the AM was never selected. When we confirmed that the data 

followed a log-normal distribution, the GM was used as the best measure of the central 

tendency. However, when the shape of the distribution was not clearly right-skewed, we 

chose the median value as it is considered the most appropriate metric for general skewed 

distributions27. Finally, we estimated mid-point values for kover and kunder using (eq. 4a) and 

(eq. 4b). The median value was selected as the best estimate of the central tendency for these 

correction factors since their distributions are truncated by the assumptions that kover>1 and 

kunder<1.

Confidence-weighting of pooled estimates

The lack of information on sample size and/or variance for many OEMD measurements 

ruled out inverse variance and other traditional measurement quality weighting procedures.28 

Therefore, a methodology was developed to weight our pooled measurements based on their 

quality and relevance for epidemiological studies, in particular for INTEROCC. The 

weighting approach was based on the use of expert confidence ratings as weights. These 

ratings had been initially used to include/exclude measurements from the OEMD. 

INTEROCC experts, with experience in occupational EMF measurements, used a semi-

quantitative approach to derive an average rating for each set of measurements extracted 

from a study. Using a confidence evaluation form published with the OEMD paper19, each 

EMF expert first assigned a rating between 0 and 3 (0–1: low confidence; ≥1–2: moderate 

confidence; ≥2–3: high confidence) to eight specific factors of interest: sampling strategy, 

sample size, type of statistic reported, duty factor, dosimetry type, anatomical location, 

nature of exposure scenario, and overall quality and reliability. Each set of measurements 

was rated by at least two experts and an average rating was assigned. We now used these 

ratings to adjust the pooled estimates to our confidence in the quality and relevance of the 

measurements.
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Data pooling and calculation of confidence-weighted statistics

Finally, the EMF exposure statistics (AMi & GMi), for each OEMD record i, were pooled to 

obtain mean exposure statistics by EMF source, frequency band and dosimetry type, using 

the expert ratings as confidence weights (Ci). Thus, confidence-weighted means (cwAM 
and cwGM) and standard deviations (cwSD and cwGSD) were calculated for each electric or 

magnetic field with these formulas derived in the Appendix:

(5)

(6)

(7)

(8)

where Ni is the number of individual measurements i used to calculate the pooled summary 

statistics for each record i in the OEMD. When Ni was not available, the median N = 10 

from the OEMD records was used. Equations 7 and 8 were derived from the general formula 

for the unbiased weighted sample variance with non-random (a.k.a., reliability) weights29 

and when Ci = 1, are simply the classic formulas for the unweighted SD and GSD.

Since measurement data pooling was performed by dosimetry type, pooled exposure 

estimates obtained from spot measurements comprise several distances while those obtained 

from personal or operator position involve several anatomical locations (e.g. head, chest). 

Due to the different availability of measurements, some sources in the SEM may have 

estimates for just one dosimetry type while others may have estimates for two or more. 

Maximum values, by source, frequency and dosimetry, were also included in the SEM, as 

well as information on the exact number of measurements pooled for each estimate.

To compare the values between pooled estimates for different dosimetries, we analyzed the 

overall difference between estimates for the same source by comparing different possible 
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combinations (i.e. operator position versus spot; personal versus operator position and 

personal versus spot). For this analysis, we used the intraclass correlation coefficient (ICC) 

which, similarly to a one-way ANOVA, allows comparing continuous values between 

groups30.

Quality control

To check the quality of the estimation process and ensure the assumptions in our semi-

empiric methods were appropriate for OEMD data, we performed tests based on 

fundamental statistical characteristics of log-normal distributions (such as 

Min<GM<AM<Max) as well as more specific checks based on EMF physical properties19. 

Manual calculations were also performed, comparing the results with those from the 

programmed algorithms. Identified errors were corrected, thus ensuring that both statistical 

characteristics and physical laws were not breached in the final dataset.

Analysis of variance (ANOVA)

To test the ability of the SEM to assign different exposures to subjects in an epidemiological 

study, we performed a one-way ANOVA with EMF source as the independent variable and 

the (reported or estimated) AMi from OEMD as the response variable. Because of the large 

number of sources in the matrix and the diversity of frequencies and EMF magnitudes, as an 

example, we compared the values for mean electric fields for RF sources with three or more 

measurements at the operator position. Since ANOVA requires normal residuals and equal 

variances, data were log-transformed for this analysis. Furthermore, after confirming 

heterocedasticity (unequal variances between groups) using Levene’s test and assuming log-

normality, we also used the non-parametric Welch’s test with untransformed data.

Validation

To test the validity of our methods to estimate parameters from limited summary statistics, 

Monte Carlo simulations were performed using the formulas in Table 1 on 10 000 random 

samples from a log-normal distribution with parameters similar to those found with EMF 

measurements (i.e. GM=20 and GSD=2.5). To make a realistic simulation, the sample size N 
for each simulation was drawn randomly from the values in the OEMD and the semi-empiric 

parameters were derived from the simulated data, using the methods described above for 

obtaining  and . For each simulation, the relative errors in the summary statistic 

estimates for all methods were calculated relative to the sample statistics (GM, AM, GSD, 

SD) calculated from the N random draws:

(9)

The mean of the RE over all simulations is, therefore, a measure of the bias, and its standard 

deviation equals the relative standard deviation (RSD), a measure of the precision. The 

overall uncertainty, which is considered an approximation to the accuracy31,32, can be 

estimated from these two values:

Vila et al. Page 7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(10)

Additionally, a split data set validation was performed for an RF source (dielectric heater), 

for which mean pooled estimates were obtained from 84 E-field measurements. The 

confidence-weighted arithmetic mean was computed using both a test subset (i.e. random 

50% samples) and the entire data set, repeating these computations 1 000 times. To shed 

some light regarding possible changes over time for both exposure levels and measurements 

quality, we analyzed the available data for operator position measurements and confidence 

ratings – averaged by year – for two RF sources (aircraft radar, n=71, years=1974–1997; 

dielectric heater, n=84, years=1986–2004). Finally, to test our hypothesis that the 

measurements used in the SEM follow a log-normal distribution, we used the Shapiro-Wilk 

test on log-transformed data from EMF sources with three or more records. All statistical 

analyses and graphics were performed using R, version 3.2.333.

RESULTS

Semi-empiric parameters , and 

Univariate statistics obtained for the parameters, EN[zMax], GSD, kover and kunder, are 

presented in Table 3. With EN[zMax], its distribution over all Ni in OEMD was a priori 

unknown, so we chose its median as the central tendency ( ). GSD values tend to 

be log-normally distributed, so we chose its GM as the semi-empiric parameter 

( ). Following the logic with GSD’s central tendency that the models are linear in 

the parameters logarithms, the GM was selected as the central tendency measure for the 

corrections factors ( ) and ( ).

Exposure estimates in the SEM

The SEM contains AM, GM and maximum exposure estimates for 312 occupational sources 

of EMF exposure by frequency band, and estimates of their associated variability (SD and 

GSD). The maximum values for each source are the maxima of both the Max and AM 
values from the input OEMD records. Exposure estimates are provided for various types of 

dosimetry (i.e. personal, spot, operator position) as well as for literature reviews and expert 

judgments. In total, there are 401 combinations of EMF source, frequency band and 

dosimetry type. Table 4 summarizes the records used to obtain the different mean estimates. 

In total, over 3 000 measurements were compiled to create the SEM.

This table also outlines the different estimation methods used. While methods 2–5 were 

more frequently used, methods 1, 6, 8 and 9 were used less often. More than 400 single 

measurements were used in the calculations; hence method 10 was also common. More than 

50% of the estimates were obtained from 2 or more measurements, while the remainder used 

only one. As an example of the SEM results, Figure 1 shows the EMF sources with the 

minimum and maximum confidence-weighted geometric means (operator position) in the 

RF, IF and ELF frequency bands. Figure 2 shows the evolution of exposure levels and 
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measurement quality for two RF sources over time. A considerable decrease of exposure 

levels and a slight increase of data quality are appreciable.

The confidence evaluation process

A total of 268 quantitative ratings were used as weights, since the same rating was assigned 

to two or more measurements if they shared the same characteristics. Of these, 135 (~50%) 

are above 2 (high confidence), 120 (~45%) are between 1 and 2 (moderate confidence) while 

only 13 ratings (~5%) are below 1 (low confidence). To illustrate the impact of the 

weighting process in the SEM calculations, Figure 3 shows the distribution of the E-field 

measurements used to calculate the mean (spot) estimate for the RF source “continuous 

shortwave diathermy”. These plots show weighted and unweighted regression lines over 

distance, highlighting the impact of the ratings on the weighted line (dashed). Measurements 

rated as low confidence are downplayed while moderate and high confidence values have a 

stronger influence on the final estimate.

ANOVA

In the ANOVA analysis to assess the ability of the SEM estimates to assign exposure 

variation for epidemiological analysis, the RF source explained almost 60% of the variability 

of the E-field and these differences were significant (p<0.0001). The Welch’s test 

(p<0.0001) also confirmed this heterocedasticity.

Validation

The simulations based on the estimation formulas in Table 1 yielded overall uncertainties 

(i.e. accuracy) for GM and AM estimates between 47–143% (Table 5). For variability 

statistics, GSD estimates were obtained with accuracies between 33–78% while SD 

estimates yielded extreme overall uncertainties. An additional simulation using different N 
values showed a clear pattern of better performance with larger sample sizes (data not 

shown). Furthermore, these simulations showed that some estimation methods have less 

overall uncertainty when  is used instead of EN[zMax] (see Table A-III in the Appendix). 

Hence, our SEM calculations used the zMax parameter which gave the best accuracy in the 

simulations of each statistic/method combination in Table 5. The split data set validation 

yielded a median relative error of −18%.

The Shapiro-Wilk test confirmed the log-normal hypothesis (p-value > 0.05) in around 85% 

of the analysed sources. The ICC analysis showed moderate to substantial agreement for the 

compared dosimetries (i.e. ICC=0.80 for spot versus operator position, n=18; ICC=0.69 for 

personal versus operator position, n=9; ICC=0.53 for spot versus personal dosimetries, 

n=20).

DISCUSSION

This work allowed the construction of a SEM containing estimated exposure statistics for the 

most common occupational sources of EMF exposure, identified through the INTEROCC 

study questionnaire. This database represents a new approach for occupational exposure 

assessment, based on EMF sources independent of occupation. The SEM will be available 
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on-line as a free-access tool at http://www.crealradiation.com/index.php/es/databases. 

Although the current version does not include all possible EMF sources, it can be updated 

with new or newly identified measurements and sources.

One advantage of the source-based approach is that personal determinants of exposure 

obtained from questionnaires should reduce Berkson errors, increasing the validity and 

reliability of both exposure and risk estimates15. However, the SEM mean exposures will 

still leave residual Berkson errors due to the combination of measurements from different 

studies and locations (i.e. distances or anatomical positions). Another advantage is the 

SEM’s ability to evaluate occupational exposures to RF and IF fields. Since no JEM yet 

exists for these higher frequencies, only a source-based approach can provide quantitative 

estimates of exposure for INTEROCC and other studies. The results of the ANOVA and the 

non-parametric test confirmed the existence of significant between-source variability, which 

allows the assignment of different exposures to study subjects, necessary for identifying 

exposure-response relationships in risk analysis. Previous efforts to reduce exposure 

misclassification included the development of task-exposure matrices for other agents34–37. 

However, earlier advocates of a source-based approach for EMF exposure assessment38–41 

recommended the use of combined estimates from a JEM together with information such as 

duration and location related to specific sources of exposure. To our knowledge, this is the 

first time that a full source-based approach, independent of the occupation, has been 

attempted.

The mean exposure (i.e. AM or GM) was selected as the primary exposure metric in the 

SEM because it best represents measurements taken in diverse settings. There has been 

considerable discussion whether the AM or GM from JEMs best reduces Berkson errors in 

an epidemiological analysis42–45, and these same considerations apply to the SEM. 

Although the GM is the best estimate of the central tendency for log-normally distributed 

data, the AM has been considered the best summary measure for linear and convex dose-

response relationships, while the GM would be a better metric when the proposed 

mechanism is log-linear (i.e. the response is proportional to the logarithm of the exposure/

dose)45–49. The availability of both AM and GM in the SEM allows selection of the more 

appropriate metric for the study hypothesis. The provision of within-source variability 

statistics (i.e. cwSD and cwGSD) also allows correction of risk estimates for bias attributable 

to Berkson error as well as for uncertainty propagation analysis18,50–52. Moreover, although 

bias estimates were provided for only half the methods, use of this information as weights 

for the pooled statistics should be explored in the future.

Several methods were developed for estimating parameters based on scarce measurement 

data. Methods 1 and 2 require enough available variables but allow estimating AM, GM, 

GSD, and SD based on exact relationships between the true statistics of a log-normal 

distribution24. Method 2, in particular, was based on an estimation formula, 

, which has recently been popularized by physicists for 

“guesstimation”53,54 and variants have been used in exposure assessment efforts3,4,7. To 

extend this estimation technique to the other combinations of statistics, we introduced 

several semi-empiric methods to derive equations where the literature provided insufficient 

data for exact solutions. Although these semi-empiric estimates fill many gaps in the 
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available data, they add to exposure assessment uncertainty, as shown by the simulations in 

Table 5. Moreover, the method we used to reliably estimate parameters from only maximum 

values, as proved by the relatively low bias obtained in the simulations, provides a novel 

approach which, to our knowledge, was lacking in the present literature. For data 

combinations not considered in Tables 1 and 2, which may also be found in the literature, we 

provided the assumptions and premise formulas needed to easily derive appropriate 

methods.

We provided evidence for the reliability of our methodology through both simulations and a 

split-dataset validation. While the simulated accuracies are far greater than the 25% accuracy 

criterion established by NIOSH for occupational exposure measurements (NIOSH, 1994), 

most methods for GM had overall uncertainties of 53% or less, which we consider sufficient 

for retrospective epidemiology. Moreover, these accuracies are expected to improve if GSD 
and/or SD are extracted from the literature, or larger sample sizes are used, as seen in our 

additional simulations and previous studies55. However, the impact of these exposure 

assessment errors on risk estimates should be investigated. For the methods in Table 2, a 

comprehensive approach for evaluating uncertainties was not found. Although some of the 

estimated values violated the assumptions kover>1 and kunder<1, one of the semi-empiric 

estimated parameters ( ) compared well with a calculated value (kover =1.41) 

based on empirical monitoring data (i.e. measurements of the same location using two 

different ELF-MF meters at a car factory in the Netherlands). However, further validations 

are indicated for these correction factors, as well as for the equations in Tables 1 and 2.

The influence of measurement quality on exposure and risk estimates requires a rigorous 

evaluation, including transparency in the way data are weighted for their actual or relative 

value28,56. Some authors5,6,28 proposed the use of sample size or inverse variance to obtain 

quality-weighted exposure estimates. However, the frequent lack of this information for 

measurements in the EMF literature makes such approaches unfeasible. We overcame this 

difficulty by using expert confidence ratings to adjust our estimates to the quality and 

relevance of the pooled measurements. The adopted scoring system agrees with a recent 

proposal for the evaluation of exposure data quality28, which introduced a method to classify 

measurements into four quality groups (i.e. good, moderate, poor and unacceptable). 

Although we did not distinguish between poor and unacceptable measurements, those rated 

as low confidence (0–1) were generally excluded from the pooling. However, some low 

confidence measurements, for which no better data were available, were included in the 

SEM. Based on this confidence classification, sensitivity analysis may be conducted (e.g. 

excluding lower quality data). This method also allows accounting for sampling 

characteristics, while other weighting approaches, such as inverse variance, only account for 

statistical uncertainty and do not consider other potentially important factors (e.g. quality of 

the task description and the sampling devices or focus on high exposures) which can be 

easily identified in the literature and may determine the quality and relevance of a 

measurement28. Thus, similarly to meta-analysis in epidemiology57, measurements with 

higher confidence have a larger contribution to the weighted mean. Finally, this approach 

allowed the raters to use a simple additive method to assign scores, which has been shown to 

be a good predictor of overall methodological quality58,59.
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One weakness of the SEM was our inclusion of less accurate spot and operator position 

dosimetries in order to provide exposure data for some of the reported sources. However, the 

results of the ICC showed that the overall differences between the three dosimetry types are 

small. Estimates obtained from operator position or spot measurements may, therefore, be 

reliably used as surrogates when personal exposure is not available. Moreover, confidence-

weighted estimates were adjusted to head exposure through the confidence weighting 

process. Measurements made at head location obtained higher ratings and were upgraded in 

the pooling. To allow use of the SEM in studies on other locations (e.g. chest, gonads) – 

where different weighting approaches may be applied – the unweighted estimates were also 

provided. Since the confidence evaluations for all eight factors are stored in the SEM 

database, future studies may reduce the weight given to head measurements while retaining 

the other seven factors affecting measurement quality.

Another weakness is the lack of use of anatomical location and distance information 

collected in the OEMD for spot and operator position measurements. SEM values refer, 

therefore, to average levels over different exposure scenarios, which provide the within-

source variability inherent within each mean estimate. Pooled estimates represent different 

situations of exposure depending on the dosimetry type. Estimates for personal and operator 

position comprise measurements at different anatomical locations (e.g. head, chest, or waist) 

while spot estimates include exposures at different distances (e.g. 30–100 cm for most ELF 

sources). However, as shown in Figure 2, the availability of this information may allow 

future modelling of exposures at specific distances and locations, useful in studies interested 

in other body parts.

The analysis of the available measurement data for different years showed signs of a slight 

data quality increase over time, which is reasonable considering the improvements in 

industrial hygiene60. Exposure levels, on the contrary, showed a clear decrease pattern, 

which is in line with the trends shown by other technologies such as mobile phones61. 

However, since level changes are limited to one order of magnitude and OEMD data for the 

same source seldom span several years, we do not expect that these changes will have a 

strong effect on the SEM estimates.

The SEM can be used to assess EMF exposures for other occupational and residential 

epidemiologic studies that have collected individual information on the use of EMF sources. 

Such studies require questionnaires that elicit individual information about the type of EMF 

sources used/exposed, as well as about conditions of use (e.g. distance to the source, 

automation) to adjust the SEM estimates to the specific tasks and work characteristics of the 

individual. If the time-weighted average or cumulative exposures are desired, the 

questionnaire also needs to obtain information on the frequency and duration of use/

exposure. In INTEROCC, industry was considered through the classification of all EMF 

sources into twelve occupational sections19. Therefore, the variability due to industrial 

differences is embedded within the type of source itself, which together with the 

aforementioned information on other exposure determinants allows a detailed estimation of 

a subject’s level of exposure. While the means in the SEM are most useful in chronic disease 

studies, the EMF maxima can be applied to acute effects, such as electromagnetic 

interference with pacemakers and other medical devices62.
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CONCLUSION

The methodology described in this paper allowed the construction of the first SEM for EMF 

exposure assessment, based on measurements identified in the literature, and supplemented 

with expert judgment estimates for sources without available measurements. These methods 

made use of measurement data which more conventional methods would have discarded. 

Although more analyses of their uncertainty and validity are needed, the SEM methodology 

may also be useful for other physical and chemical agents for which available measurement 

data are sparse and traditional methods are insufficient.

The SEM will be used to estimate cumulative RF and ELF exposures of the INTEROCC 

subjects, through algorithms which combine SEM means with individual data on exposure 

determinants collected by interviews. This more individualized exposure assessment will 

potentially increase within-job variability among subjects while reducing uncertainty due to 

misclassification and Berkson errors. We expect that this approach will strengthen our ability 

to evaluate potential health effects from EMF exposures.
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GLOSSARY

EMF Electromagnetic fields

E-field Electric field strength, in volts per meter (V/m)

H-field Magnetic field strength, in amperes per meter (A/m) [high frequency fields]

B-field Magnetic flux density, in microTesla (μT) [low frequency fields]

PD Power Density, in watts per square meter (W/m2)

SMF Static Magnetic Fields, in microTesla (μT), 0 Hz

ELF Extremely Low Frequency (3–3000 Hz)

IF Intermediate Frequency (3 kHz – 10 MHz)

RF Radiofrequency (10 MHz – 300 GHz)

Min Minimum

Max Maximum

N sample size

AM Arithmetic mean

GM Geometric mean

SD Standard deviation

GSD Geometric standard deviation

zMax Standard normal quantile of a data set’s maximum value

ODR utside Dynamic Range (The range between an EMF instrument’s overload 

input and its minimum input with acceptable accuracy)

OEMD Occupational Exposure Measurement Database

HVTL High Voltage Transmission Lines

TIG Tungsten Inert Gas

CVD Chemical Vapor Deposition

References

1. Sauvé J-F, Beaudry C, Bégin D, Dion C, Gérin M, Lavoué J. Statistical modeling of crystalline silica 
exposure by trade in the construction industry using a database compiled from the literature. J 
Environ Monit JEM. 2012; 14:2512–2520. [PubMed: 22875042] 

2. Sauvé J-F, Beaudry C, Bégin D, Dion C, Gérin M, Lavoué J. Silica exposure during construction 
activities: statistical modeling of task-based measurements from the literature. Ann Occup Hyg. 
2013; 57:432–443. [PubMed: 23223272] 

Vila et al. Page 14

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Koh D-H, Nam J-M, Graubard BI, Chen Y-C, Locke SJ, Friesen MC. Evaluating temporal trends 
from occupational lead exposure data reported in the published literature using meta-regression. 
Ann Occup Hyg. 2014; 58:1111–1125. [PubMed: 25193938] 

4. Koh D-H, Locke SJ, Chen Y-C, Purdue MP, Friesen MC. Lead exposure in US worksites: A 
literature review and development of an occupational lead exposure database from the published 
literature. Am J Ind Med. 2015; 58:605–616. [PubMed: 25968240] 

5. Hein MJ, Waters MA, van Wijngaarden E, Deddens JA, Stewart PA. Issues when modeling benzene, 
toluene, and xylene exposures using a literature database. J Occup Environ Hyg. 2008; 5:36–47. 
[PubMed: 18041643] 

6. Hein MJ, Waters MA, Ruder AM, Stenzel MR, Blair A, Stewart PA. Statistical modeling of 
occupational chlorinated solvent exposures for case-control studies using a literature-based 
database. Ann Occup Hyg. 2010; 54:459–472. [PubMed: 20418277] 

7. Lavoué J, Bégin D, Beaudry C, Gérin M. Monte Carlo simulation to reconstruct formaldehyde 
exposure levels from summary parameters reported in the literature. Ann Occup Hyg. 2007; 
51:161–172. [PubMed: 17046960] 

8. Park D, Stewart PA, Coble JB. Determinants of exposure to metalworking fluid aerosols: a literature 
review and analysis of reported measurements. Ann Occup Hyg. 2009; 53:271–288. [PubMed: 
19329796] 

9. Burau KD, Huang B, Whitehead LW, Delclos GM, Downs TD. A system linking occupation history 
questionnaire data and magnetic field monitoring data. J Expo Anal Environ Epidemiol. 1998; 
8:231–252. [PubMed: 9577753] 

10. Forssén UM, Mezei G, Nise G, Feychting M. Occupational magnetic field exposure among women 
in Stockholm County, Sweden. Occup Environ Med. 2004; 61:594–602. [PubMed: 15208375] 

11. Bowman JD, Touchstone JA, Yost MG. A Population-Based Job Exposure Matrix for Power-
Frequency Magnetic Fields. J Occup Environ Hyg. 2007; 4:715–728. [PubMed: 17654227] 

12. Gobba F, Bravo G, Rossi P, Contessa GM, Scaringi M. Occupational and environmental exposure 
to extremely low frequency-magnetic fields: a personal monitoring study in a large group of 
workers in Italy. J Expo Sci Environ Epidemiol. 2011; 21:634–645. [PubMed: 21468121] 

13. Huss A, Vermeulen R, Bowman JD, Kheifets L, Kromhout H. Electric shocks at work in Europe: 
development of a job exposure matrix. Occup Environ Med. 2013; 70:261–267. [PubMed: 
23175734] 

14. Vergara XP, Fischer HJ, Yost M, Silva M, Lombardi DA, Kheifets L. Job Exposure Matrix for 
Electric Shock Risks with Their Uncertainties. Int J Environ Res Public Health. 2015; 12:3889–
3902. [PubMed: 25856552] 

15. Kelsh MA, Kheifets L, Smith R. The impact of work environment, utility, and sampling design on 
occupational magnetic field exposure summaries. AIHAJ J Sci Occup Environ Health Saf. 2000; 
61:174–182.

16. Kheifets L, Bowman JD, Checkoway H, Feychting M, Harrington JM, Kavet R, et al. Future needs 
of occupational epidemiology of extremely low frequency electric and magnetic fields: review and 
recommendations. Occup Environ Med. 2009; 66:72–80. [PubMed: 18805878] 

17. Armstrong BG. Effect of measurement error on epidemiological studies of environmental and 
occupational exposures. Occup Environ Med. 1998; 55:651–656. [PubMed: 9930084] 

18. Greenland S, Fischer HJ, Kheifets L. Methods to Explore Uncertainty and Bias Introduced by Job 
Exposure Matrices. Risk Anal Off Publ Soc Risk Anal. 2015; doi: 10.1111/risa.12438

19. Vila J, Bowman JD, Richardson L, Kincl L, Conover DL, McLean D, et al. A Source-based 
Measurement Database for Occupational Exposure Assessment of Electromagnetic Fields in the 
INTEROCC Study: A Literature Review Approach. Ann Occup Hyg. 2016; 60:184–204. 
[PubMed: 26493616] 

20. Bowman, JD., Kelsh, MA., Kaune, WT. Manual for Measuring Occupational Electric and 
Magnetic Field Exposures. DHHS, CDC, National Institute for Occupational Safety and Health 
(NIOSH); Cincinnati, Ohio (USA): 1998. http://www.cdc.gov/niosh/docs/98-154/pdfs/98-154.pdf

21. Hitchcock, RT., Patterson, RM. Radio-Frequency and ELF Electromagnetic Energies: A Handbook 
for Health Professionals. Van Nostrand Reinhold; New York: 1995. 

Vila et al. Page 15

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cdc.gov/niosh/docs/98-154/pdfs/98-154.pdf


22. Rappaport, S., Kupper, L. Quantitative Exposure Assessment. Stephen Rappaport; El Cerrito, 
California (USA): 2008. 

23. Roosli, M., editor. Epidemiology of Electromagnetic Fields. CRC Press; Boca Raton: 2014. 

24. Aitchison, J., Brown, JAC. The Lognormal Distribution. Cambridge University Press; Cambridge, 
UK: 1963. 

25. Royston JP. Algorithm AS 177: Expected Normal Order Statistics (Exact and Approximate). J R 
Stat Soc Ser C Appl Stat. 1982; 31:161–165.

26. Zwillinger, D., Kokoska, S. Standard Probability and Statistics Tables and Formulae. Boca Raton, 
USA: 1999. Order statistics. https://www.crcpress.com/CRC-Standard-Probability-and-Statistics-
Tables-and-Formulae/Zwillinger-Kokoska/9781584880592 [accessed 7 Dec2015]

27. Baker, S.Driver, J., McCallum, D., editors. Residential Exposure Assessment. Springer US; 
Boston, MA: 2001. http://link.springer.com/10.1007/978-1-4615-1279-0 [accessed 11 Jul2016]

28. Tielemans E, Marquart H, De Cock J, Groenewold M, Van Hemmen J. A proposal for evaluation of 
exposure data. Ann Occup Hyg. 2002; 46:287–297. [PubMed: 12176716] 

29. Harrell, FE, Jr. with contributions from Charles Dupont and many others. Hmisc: Harrell 
Miscellaneous. R package version 3.17-0. 2015. http://CRAN.R-project.org/package; http://
www.inside-r.org/packages/cran/hmisc/docs/wtd.stats=Hmisc

30. Teschke K, Olshan AF, Daniels JL, De Roos AJ, Parks CG, Schulz M, et al. Occupational exposure 
assessment in case-control studies: opportunities for improvement. Occup Environ Med. 2002; 
59:575–593. discussion 594. [PubMed: 12205230] 

31. NIOSH. Manual of Analytical Methods. 4. National Institute for Occupational Safety and Health; 
1994. Chapter Phttp://www.cdc.gov/niosh/docs/2003-154/pdfs/chapter-p.pdf

32. EN 482 Workplace atmospheres - General requirements for the performance of procedures for the 
measurement of chemical agents: Comité Européen de Normalization, 1994.

33. R Core Team. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing; Vienna, Austria: 2014. http://www.R-project.org/

34. Benke G, Sim M, Fritschi L, Aldred G. Beyond the job exposure matrix (JEM): the task exposure 
matrix (TEM). Ann Occup Hyg. 2000; 44:475–482. [PubMed: 10963712] 

35. Benke G, Sim M, Fritschi L, Aldred G. A task exposure database for use in the alumina and 
primary aluminium industry. Appl Occup Environ Hyg. 2001; 16:149–153. [PubMed: 11217702] 

36. Dick FD, Semple SE, van Tongeren M, Miller BG, Ritchie P, Sherriff D, et al. Development of a 
Task-Exposure Matrix (TEM) for Pesticide Use (TEMPEST). Ann Occup Hyg. 2010; 54:443–452. 
[PubMed: 20338967] 

37. Hyland RA, Yates DH, Benke G, Sim M, Johnson AR. Occupational exposure to asbestos in New 
South Wales, Australia (1970–1989): development of an asbestos task exposure matrix. Occup 
Environ Med. 2010; 67:201–206. [PubMed: 20223845] 

38. Semple S, Cherrie JW. Factors influencing personal magnetic field exposure: preliminary results 
for power utility and office workers. Ann Occup Hyg. 1998; 42:167–171. [PubMed: 9684557] 

39. Coble JB, Dosemeci M, Stewart PA, Blair A, Bowman J, Fine HA, et al. Occupational exposure to 
magnetic fields and the risk of brain tumors. Neuro Oncol. 2009; 11:242–249. [PubMed: 
19234232] 

40. Friesen MC, Coble JB, Lu W, Shu X-O, Ji B-T, Xue S, et al. Combining a job-exposure matrix 
with exposure measurements to assess occupational exposure to benzene in a population cohort in 
shanghai, china. Ann Occup Hyg. 2012; 56:80–91. [PubMed: 21976309] 

41. Koh D-H, Bhatti P, Coble JB, Stewart PA, Lu W, Shu X-O, et al. Calibrating a population-based 
job-exposure matrix using inspection measurements to estimate historical occupational exposure to 
lead for a population-based cohort in Shanghai, China. J Expo Sci Environ Epidemiol. 2014; 24:9–
16. [PubMed: 22910004] 

42. Seixas NS, Robins TG, Moulton LH. The use of geometric and arithmetic mean exposures in 
occupational epidemiology. Am J Ind Med. 1988; 14:465–477. [PubMed: 3189359] 

43. Crump KS. On Summarizing Group Exposures in Risk Assessment: Is an Arithmetic Mean or a 
Geometric Mean More Appropriate? Risk Anal. 1998; 18:293–297. [PubMed: 9664725] 

Vila et al. Page 16

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.crcpress.com/CRC-Standard-Probability-and-Statistics-Tables-and-Formulae/Zwillinger-Kokoska/9781584880592
https://www.crcpress.com/CRC-Standard-Probability-and-Statistics-Tables-and-Formulae/Zwillinger-Kokoska/9781584880592
http://link.springer.com/10.1007/978-1-4615-1279-0
http://CRAN.R-project.org/package
http://www.inside-r.org/packages/cran/hmisc/docs/wtd.stats=Hmisc
http://www.inside-r.org/packages/cran/hmisc/docs/wtd.stats=Hmisc
http://www.cdc.gov/niosh/docs/2003-154/pdfs/chapter-p.pdf
http://www.R-project.org/


44. EPA. Supplemental Guidance to RAGS: Calculating the Concentration Term. US Environmental 
Protection Agency (USEPA); Washington, DC (USA): 1992. 

45. Steenland K, Deddens JA, Zhao S. Biases in estimating the effect of cumulative exposure in log-
linear models when estimated exposure levels are assigned. Scand J Work Environ Health. 2000; 
26:37–43. [PubMed: 10744176] 

46. Deng Q, Wang X, Wang M, Lan Y. Exposure-response relationship between chrysotile exposure 
and mortality from lung cancer and asbestosis. Occup Environ Med. 2012; 69:81–86. [PubMed: 
21742741] 

47. Pronk A, Preller L, Raulf-Heimsoth M, Jonkers ICL, Lammers J-W, Wouters IM, et al. Respiratory 
symptoms, sensitization, and exposure response relationships in spray painters exposed to 
isocyanates. Am J Respir Crit Care Med. 2007; 176:1090–1097. [PubMed: 17656675] 

48. Lippmann M. The search for non-linear exposure-response relationships at ambient levels in 
environmental epidemiology. Nonlinearity Biol Toxicol Med. 2005; 3:125–144. [PubMed: 
19330159] 

49. Wallace ME, Grantz KL, Liu D, Zhu Y, Kim SS, Mendola P. Exposure to Ambient Air Pollution 
and Premature Rupture of Membranes. Am J Epidemiol. 2016; 183:1114–1121. [PubMed: 
27188941] 

50. Bateson TF, Wright JM. Regression calibration for classical exposure measurement error in 
environmental epidemiology studies using multiple local surrogate exposures. Am J Epidemiol. 
2010; 172:344–352. [PubMed: 20573838] 

51. Simon SL, Hoffman FO, Hofer E. The two-dimensional Monte Carlo: a new methodologic 
paradigm for dose reconstruction for epidemiological studies. Radiat Res. 2015; 183:27–41. 
[PubMed: 25496314] 

52. Jurek AM, Maldonado G, Greenland S, Church TR. Exposure-measurement error is frequently 
ignored when interpreting epidemiologic study results. Eur J Epidemiol. 2006; 21:871–876. 
[PubMed: 17186399] 

53. Mahajan, S. Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic 
Problem Solving. The MIT Press; Cambridge, Massachusetts (USA) & London, England (UK): 
2010. http://mitpress.mit.edu/books/street-fighting-mathematics

54. Weinstein, L., Adam, JA. Guesstimation: Solving the World’s Problems on the Back of a Cocktail 
Napkin. Princeton University Press; Princeton, New Jersey (USA) and Woodstock, Oxfordshire 
(UK): 2008. 

55. Bartley, DL., Shulman, SS., Schlecht, PC. National Institute for Occupational Safety and Health, 
NIOSH Manual of Analytical Methods. 4. 2003. Measurement uncertainty and NIOSH method 
accuracy range. Chapter P

56. Money CD, Margary SA. Improved use of workplace exposure data in the regulatory risk 
assessment of chemicals within Europe. Ann Occup Hyg. 2002; 46:279–285. [PubMed: 12176715] 

57. Higgins, JPT., Green, S. Chapter 9: Analysing data and undertaking meta-analyses. Cochrane 
Handbook for Systematic Reviews of Interventions. 2009. http://handbook.cochrane.org

58. Dawes RM. The robust beauty of improper linear models in decision making. Am Psychol. 1979; 
34:571–582.

59. Radin DI, Ferrari DC. Effects of Consciousness on the Fall of Dice: A Meta-Analysis. J Sci Explor. 
5:61–83.

60. Rose, VE., Cohrssen, B., editors. Patty’s Industrial Hygiene. 6. John Wiley and Sons, Inc; 2010. 

61. Kelsh MA, Shum M, Sheppard AR, McNeely M, Kuster N, Lau E, et al. Measured radiofrequency 
exposure during various mobile-phone use scenarios. J Expo Sci Environ Epidemiol. 2011; 
21:343–354. [PubMed: 20551994] 

62. Bowman, JD., Calvert, GM., Gerard, G., Witters, DM. Managing the potential hazards from 
electromagnetic interference (EMI) with personal medical electronic devices in workplaces. 
Baltimore, MD, USA: 2016. 

Vila et al. Page 17

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mitpress.mit.edu/books/street-fighting-mathematics
http://handbook.cochrane.org


Appendix: Statistical Methods Developed for the INTEROCC Study’s 

Assessment of EMF Exposures

Summary

We here derive the formulas for calculating the confidence-weighted arithmetic means 

(AM), geometric means (GM) and their corresponding standard deviations (SD and GSD) 

from EMF data obtained from the Occupational Exposure Measurement Database (OEMD). 

In part A of this appendix, we derive the formulas in Tables 1 and 2 for estimating summary 

statistics which are not in OEMD. Part B contains derivations for the confidence weighted 

means and standard deviations from OEMD’s summary statistics

A. Semi-empiric methods for estimating summary statistics for the SEM

The problem is to estimate these statistics from sparse information, typically the minimum 

(Min) and maximum (Max) but also the number of measurements (N), arithmetic or 

geometric mean, and outside-dynamic-range values (ODRMin or ODRMax). Our solution is 

to derive the summary statistics from the assumption that the exposure data are distributed 

log-normally, and any unknown variable (such as the GSD) needed to complete the 

derivation is replaced with its central tendency calculated from an appropriate data set – a 

semi-empiric approach.

This approach is an extension of the expert judgment method developed by Bowman, 

Sivaganesan, Shulman and Cardis [2013], which starts with the log-normal relationships for 

the standard normal quantiles, z, corresponding to Min and Max:

(A1a)

(A1b)

By adding and subtracting these two equations, Bowman et al. [2013] derived formulas for 

estimating GM and GSD as functions of Min and Max:

(A2a)

(A2b)

where the hat designates estimates and the symbols α, ζ, and GME are defined as:
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(A3)

(A4)

The parameter α is an asymmetry parameter that measures how far zMin and zMax deviate 

from being symmetric about zero (i.e. zMin = −zMax). ζ is the average distance of zMin and 

zMax from the mean of the log-transformed data, and therefore serves as the “effective 

quantile” in the estimation formula for the GSD (eq. A2b). GME, the geometric mean of the 

extreme values (Min and Max), has a long history, which we traced back from Enrico Fermi 

through Voltaire, Sir Isaac Newton and Euclid to the Pythagorean mathematician Archytas in 

the fifth century BCE [Bowman and Vila, unpublished].

In expert judgment studies, values for Min and Max are elicited from an expert panel, which 

provides values for two of the four variables on the right hand side of the two equations for 

GM and GSD (eqs. A2). The two remaining unknown variables, α and ζ, are the semi-

empiric parameters, whose central tendencies ᾱ and ζ̄ (means or medians as best fits the 

calibration data) are calculated from the expert judgment results with a calibration data set 

whose GM and GSD are known. After determining ᾱ and ζ̄ estimated summary statistics, 

 and , can then be calculated for exposures beyond the calibration set with eqs. A1, 

using only their Min and Max. Next, the AM and SD are derived from the exact 

relationships between the statistics of a log-normal distribution [Aitchison and Brown, 

1957]:

(A5)

(A6)

Formulas for all the statistics in the expert judgment method are in the first row of Table A-I. 

Note that the formulas in Table A-I are the anti-logs of eqs. A2 and A6, which results in 

more compact equations with greater computational efficiency.

Summary statistics from OEMD data—A similar approach is used to estimate 

summary statistics with data from OEMD, although the formalism is made more 

complicated by the many combinations of Min, Max, AM, GM, N, ODRMin, and/or 

ODRMax whose values were extracted into OEMD from different publications. In order to 

structure a semi-empiric derivation of formulas for all the summary statistics, we start with a 

Vila et al. Page 19

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



theorem from algebra that a system of simultaneous polynomial equations has solutions if 

the number of equations equals the number of unknown variables.

With the formalism outlined above, there are 2 linear equations (eqs. A2a and A2b). (Note 

that the log-transformed statistics like ln GM and ln Min are treated as the variables in order 

to make these equations linear) If eq. A4 is substituted into eq. A2a, these two have a total of 

6 linear variables (ln GM, ln GSD, ln Max, ln Min, α and ζ). Since values for Max and Min 
are provided by the expert panel, only four of the variables are unknown, but this is greater 

than the number of equations, leaving their solution underdetermined. In order to evaluate 

the formal solutions for the unknowns, ln  and ln  in eqs. A2, the expert judgment 

method therefore provided values for the 2 semi-empiric variables α and ζ. This reasoning 

can be expressed numerically as:

(A7)

An algebraic form of eq. A7 can be re-arranged into a general expression for the number of 

semi-empiric variables needed to solve a system of simultaneous equations:

(A8)

where s = number of semi-empiric variables, t = total number of variables, m = number of 

equations, and v = number of variables with values.

To illustrate the application of this semi-empiric method to OEMD data, consider a record 

with values for Min and Max, so there are v=2 variables with values (method #2 in Table A-

I). To obtain estimates for GM and GSD, we use eqs. A2a and A2b, creating a system of 

m=2 simultaneous equations with t = 6 variables. According to eq. A8, values are needed for 

s = 2 semi-empiric variables in order to solve these two equations for the unknown summary 

statistics.

The first semi-empiric variable is provided by assuming zMin = −zMax, so that α = 0 (eq. 

A-3). We call this “the symmetric quantile” assumption because the minimum and 

maximum quantiles are symmetric about zero (the mean quantile), and the corresponding 

percentiles also have the symmetry PMin = 1− PMax, (e.g. the 5th and 95th percentiles). The 

symmetric quantile assumption makes eq. A2a into , whose anti-log is the 

estimation formula in Table A-I.

From the definitions of α and ζ (eqs. A3), this assumption also implies that zMax= −zMin = 

ζ, so eq. A2b becomes . A solution for  therefore requires 

the second semi-empiric parameter , where the bar represents the central tendency of 

zMax calculated exactly from the formula in Table A-I from OEMD records with v=3. With 
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semi-empiric estimates for  and , AM and SD can now be estimated with the 

relationships A5 and A6 between exact values for the summary statistics of a log-normal 

distribution, as shown for method #2 in Table A-I.

Note that the formulas for SD in Table A-I only require values for AM and GM, which are 

either input values or have already been estimated by the other formulas in Table A-I. Since 

the same situation applies to all other combinations of input data in Tables A-I and A-II, 

slight variations of eq. A6 are used to estimate SD throughout the SEM calculations.

With 2 or less variables with values in an OEMD record, semi-empiric values are needed in 

addition to the α = 0 assumption to obtain solutions for the missing summary statistics. As 

shown in Table A-I, v = 2 values for Max and Min requires a central tendency for  in 

order to estimate the summary statistics, while a record with a value for only Max (v = 1) 

requires an additional central tendency for . These central tendencies are calculated 

from a sub-set of OEMD records with values for enough variables for the simultaneous 

equations to have exact solutions (i.e. s ≤ 0). Whether the median, AM or GM is the best 

central tendency for these semi-empiric parameters is addressed in the main paper.

Summary statistics from OEMD data that include N—In addition to the summary 

statistics examined above, some OEMD records also contained the number of measurements 

N used to calculate the statistics. To employ the reported N values in our summary statistic 

estimates, zMax and zMin are equated to their expected values for a sample of N quantiles z 
from the standard normal distribution (Zwillinger and Kokoska 2000). When the N expected 

values EN[z] are ranked according to their values, these “expected normal order statistics” 

[also called “rankits” by Ipsen and Jerne (1944)] are widely used in normal probability plots 

(Snedecor and Cochran, 1989).

In the SEM calculations, the expected normal order statistics for the extreme quantiles, 

EN[zMax] and EN[zMin], are calculated by a numeric algorithm (Royston, 1982) and assumed 

to equal the actual minimum and maximum quantiles for OEMD records that have values for 

the sample size N:

(A9a)

(A9b)

In addition, the extremes of the expected normal order statistics for a given N are symmetric 

(Zwillinger and Kokoska 2000):

(A10)

In other words, they fulfil the symmetric quantile (α = 0) assumption.
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Using these results in the summary statistics calculations, there are now n = 6 simultaneous 

equations (eqs. A1a, A1b, A5, A9a, A9b and A10) with 2 additional variables with values 

(EN[zMin] and EN[zMax]), giving a total of t = 9 variables. When OEMD has Min, Max and 

AM in addition to N, the number of variables with values is now v = 5, so eq. A8 now gives 

s = −1. This negative result means there are more simultaneous equations than unknown 

variables, so this over-determined system of equations has more than one solution for both 

AM and GM in Table A-II. The common-sense resolution to this “embarrassment of riches” 

is to set AM equal to the reported AM, rather than use the solution: 

 derived from the 6 simultaneous equations.

Estimation formulas for other data combinations in OEMD that include N are given in Table 

A-II.

Table A-I

Formulas for estimating summary statistics from expert judgments for Min and Max and 

from OEMD data for Min, Max, AM and GM.

Input values Estimate Formula

Method #0: v = 2 values, m = 2 equations (eqs. A2a & A2b), s = 2 semi-empiric parameters (α and ζ)

Min & Max

 where 

Method #1: v = 3 values, m = 3 equations (eqs. A2a, A2b & A5), s = 1 assumption (α= 0)

Min, Max & AM

AM

Method #2: v = 2 values, m = 3 equations, s = 2 = 1 assumption + 1 semi-empiric parameter (zMax)
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Input values Estimate Formula

Min & Max

GME

Method #3: v = 1 value, m = 3 equations, s = 3 = 1 assumption + 2 semi-empiric parameters (zMax & GSD)

Max*
, where 

Methods #4 and 5: v = 1 value (AM or GM), m = 1 equation (eq. A5), s = 1 semi-empiric parameter (GSD or Q)

AM

AM

GM

GM

*
Formulas when Min is the only input are not given because this case does not occur in OEMD.

Note: The formulas for the estimated statistics, designated by hats, are re-defined for each method. Therefore, applications 
of estimated statistics in subsequent formulas have values defined for the same method with the given set of input data. The 
only statistics whose values are the same in multiple methods are the central tendencies for zMax and GSD, designated by 
bars.
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Table A-II

Formulas for estimating summary statistics from OEMD data that include N.

Input values Estimate Formula

Method #1′: v = 5 values, m = 6 equations (eqs. A1a, A1b, A5, A8a, A8b & A9), s = −1 (over-determined solutions)

N, Min, Max & AM

AM or 

GME or 

Method #2′: v = 4 values, m = 6 equations, s = 0 (exact solution)

N, Min & Max

GME

Method #3′: v = 3 values, m = 6 equations, s = 1 semi-empiric parameters (GSD)

N & Max
, where 

Thus, for OEMD records with N, two alternative methods in Tables A-I and II provide 

estimates for the unknown summary statistics for OEMD data combinations #1, 2 and 3. 

Comparing methods in these two tables, their formulas are identical, except for the 

exponents of  in methods 1 and 2 and the exponents of  and  in method 3. 

Those exponents contain  or  in Table A-I, but are replaced with EN[zMax] in Table 

A-II. Those exponents do not appear explicitly in methods 4 and 5.

In deciding which methods to use for the SEM calculations, we first note that methods in 

Table A-II have the additional assumption that the extreme quantiles for an OEMD record 

equal their expected values for the reported sample size N (eqs. A9). In order to evaluate the 

effects of this “expected quantile assumption,” we used the Monte Carlo simulations 

described in the main paper. Those simulations take 10,000 samples of N measurements 

from a log-normal distribution with GM = 20 and GSD = 2.5, where N for each simulation is 

a random selection from all values in OEMD. From these simulated data, we calculated the 

overall uncertainty in the estimated summary statistics (as described in the Methods of the 
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main paper) with the methods in Tables A-I and A-II. From the simulation results, we chose 

the methods with the lower overall uncertainty for the arithmetic and geometric means to use 

in the SEM calculations.

The resulting overall uncertainties for the two alternative exponents are given in Table A-III. 

The minimum uncertainty for the means are achieved with the exponent EN[zMax] for 

methods #1 and 3, but with zMax for method #2. These optimal exponents are used in the 

estimation formulas for both the SEM calculations (Table 1) and the validation calculations 

(Table 5).

Note that the uncertainty pattern for the standard deviations in Table A-III are somewhat 

different than for the means. In selecting the optimal methods, we focused on the mean 

estimates since only the SEM means are needed for obtaining risk estimates, which are 

INTEROCC’s primary objectives. We included the uncertainties in the standard deviations in 

Table A-III and Table 5, so that they can be taken into account by any future studies of the 

variabilities and uncertainties in the risk estimates by simulations with the SEM.

Table A-III

Simulated uncertainties of the alternative estimation formulas in Tables A-I and A-II with 

the lower uncertainty for each combination of the estimated statistic and method in bold.

Estimated statistic Exponent alternatives*

Overall uncertainty of the estimated statistics by method # (with 
the OEMD statistics used)

1(AM, Min & 
Max) 2(Min & Max) 3(Max)

zMax 51% 53% 212%

EN[zMax] 47% 53% 143%

zMax 125% 166%

EN[zMax] 682% 88%

zMax 75% 75% 78%

EN[zMax] 33% 33% 78%

zMax 185% 593% 894%

EN[zMax] 1793% 262,450% 2098%

*
In the simulations, these alternatives were used as  for estimation method #1, and as  in methods #2 and 3.

Statistics for measurements outside the meter’s dynamic range—The last type 

of record in OEMD are from studies which report measurements outside the meter’s 

dynamic range. In these cases, Min or Max are replaced with the dynamic range’s lower 

limit (ODRMin) or upper limit (ODRMax). In those cases, we model the actual Min or Max 
with the reported ODR values times empiric parameters kunder < 1 and kover > 1:

(A11a)
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(A11b)

Initially, we were able to calculate an average kover empirically based on data from two sets 

of measurements of personal exposures to a magnetic field source using two different 

ENERTECH EMF meters (http://www.enertech.net), a Standard EMDEX II (ODRMax=300 

μT) and a Hi-Field EMDEX II (ODRMax = 12,000 μT). However, no such data were 

available for EMF measurements below a meter’s limit of detection, so we needed a semi-

empiric approach to obtain kunder. We identified two suitable methods by using the same 

assumptions (a log-normal distribution and α = 0) and similar algebra to the derivations 

above.

In the first approach, the input data are ODRMin and Max, so eqs. A1 and A11a are 

adequate to derive kunder with the semi-empiric methods described above. The m=2 

simultaneous equations are:

(A12a)

(A12b)

These equations have a total of t = 6 variables of which v = 2 have values, so they can be 

solved for the summary statistics with s = 2 semi-empiric values for zMax and GSD.

(A13a)

(A13b)

This approach gives specific values for kunder with each OEMD record reporting ODRMin, 

but the results for kunder were often greater than 1, a violation of the model’s assumptions 

and therefore implausible.

In the second approach, a sub-set of the ODRMin records were used that also have a value 

for AM. By adding eq. A5 to the set of simultaneous equations (eq. A12), we derive a 

different formula for kunder with only one semi-empiric parameter as follows:

Add eqs. A12a and A12b, and re-arrange to give:
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(A14)

Now, substitute eq. A14 for ln GM in eq. A5, use the semi-empiric parameter , solve 

for ln kunder, and take the anti-log to obtain the desired result:

(A15)

With this approach, the mean of kunder over the sub-set is less than one, which allows for 

realistic estimates of the GM for each ODRMin record from the ODR equivalent of the 

GME (eq. A4):

(A16)

The other statistics for these ODRMin records are then calculated with analogs of the m = 2 

formulas in Table A-I. The resulting formulas are reported in Table 2 in the main paper.

B. Confidence-Weighted Means and Standard Deviations for the SEM

For each source in OEMD, the exposure statistics AMi, SDi, GMi and GSDi for all 

applicable records i are pooled with confidence weights Ci. To derive formulas for the 

confidence-weighted means and standard deviations from the summary statistics for 

individual records, we start with general formulas for the weighted arithmetic mean and 

unbiased weighted sample standard deviation in terms of the primary data xk and non-

random weights wk (a.k.a “reliability weights” (Harrel et al., 2015) :

In our derivation of the confidence weighted statistics, we next group the primary data xk 

(which is seldom present in OEMD) by their record i, so that their k indices are renumbered 

as follows:

Since the same confidence weight Ci for a given record i is applied to all the primary data xij 

in that record, the confidence weighted statistics are:
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(A17a)

(A17b)

Now the summary statistics written in terms of the primary data are:

(A18a)

(A18b)

So they can be re-arranged as:

(A19a)

(A19b)

Now, eq. A19a can be substituted into eq. A17a in order to obtain the desired formula for the 

confidence weighted AM in terms of its component exposure AMs:

(A20)

To obtain the equivalent results for the confidence weighted SD, expand the numerator of eq. 

A17b:
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to get:

where eq. A19 was used.

Finally substitute eq. A18b to obtain the desired formula:

(A21)

To obtain the confidence weighted geometric means and standard deviations, start with the 

log-transforms of eqs. A17 and A18:

where yij= ln xij.

Following the same procedures as above, the desired formulas are quickly obtained:

(A22)
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(A23)

Q.E.D.

Note that these pooling formulas (eqs. A20 – A23) can work correctly with OEMD records 

with a single measurement xi (Ni = 1) if their summary statistics are treated appropriately. 

From the definitions above of the arithmetic and geometric means, xi = AMi = GMi when Ni 

= 1. By making these substitutions for Ni = 1 records, eqs. A20 and A22 correctly calculate 

the confidence weighted means.

The values of the standard deviations for Ni =1 records are arbitrary since their contributions 

to the pooling formulas (eqs. A21 and A23) are:

For convenience in our SEM calculations, we set SDi = 0 and GSDi = 1 for Ni = 1 records, 

so they work correctly with the confidence-weighted variance formulas.
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Figure 1. 
Quartile plots (25th and 75th percentiles) for EMF sources in the SEM with the highest and 

lowest cwGM for E-, H-, and B-fields for operator position by frequency band. Estimates 

without whiskers (i.e. “transmission lines”, “electric forklift truck” and “sewing machine”) 

were obtained from only one measurement. To indicate within-source variability, the graphs 

include estimates for the first and third quartiles = e[ln(cwGM)±0.675ln(cwGSD)], where 0.675 is 

the z-value for the 75th percentile.
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Figure 2. 
Operator position E-field measurements for two RF sources (i.e. aircraft radar and dielectric 

heater) collected from documents covering the time span 1986–2004. Data points and 

corresponding confidence ratings (i.e. the size of the point) were obtained by averaging the 

available data by year. The lines represent modeled linear regressions based on the averaged 

data.
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Figure 3. 
E-field measurements versus distance for OEMD data used to estimate the confidence-

weighted mean exposure for the source “continuous shortwave diathermy” in the SEM. The 

bubbles represent data points with size proportional to the assigned rating level. The lines 

represent modeled exponential regression lines (dashed line, weighted) with y-axis in the 

linear (left graph) and logarithmic (right graph) scales. No ratings were assigned to these 

measurements below 1 or above 2. Thus, the “Rating” legend only includes a scale of sizes 

between these levels.
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Table 1

Formulas for estimating AM, GM, SD and GSD from the OEMD data. In addition to the log-normality and 

symmetric quantile (eq. 2) assumptions, the derivation of some formulas require one of more of these 

additional assumptions: A) Expected normal order statistic approximation: zMax = EN[zMax]; B) semi-empiric 

value for zMax; C) Semi-empiric value for GSD.

Method # OEMD data Estimated statistic Formula Assumptions

1 aN, Min, Max & AM

AM —

A or Ba

—

—

2 N, Min & Max

—

B

—

—

3 aN & bMax

A

, where Q =
A or Ba, C

c 
C

—

4 AM

AM —

C

C

—
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Method # OEMD data Estimated statistic Formula Assumptions

5 GM

GM —

C

C

—

a
Where N is not available, EN [zMax] is replaced with  which equals the median EN[zMax] from all available N values (except for method 

#2, see main text).

b
Formulas when Min is the only input data are omitted because this case does not occur in the OEMD.

c
The semi-empiric parameter  is calculated from OEMD records with data for methods #1 & #2.

d
In addition to the log-normality assumption and the symmetric quantile approximation (eq. 2).

Notation: Hats denote estimates; bars denote semi-empiric parameters; other symbols are input values.
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Table 2

Formulas for calculating AM, GM, SD, and GSD from OEMD data, including values outside the dynamic 

range (ODR). In addition to the log-normality and symmetric quantile assumptions, the derivation of some 

formulas required one or more of these additional approximations: Assumptions A–C from Table 1, D) Semi-

empiric value for kover; and E) Semi-empiric value for kunder.

Method # OEMD data Estimated statistic Formula Assumptions

6 bN, Min, ODRMax & AM

a 
C & D

AM —

A or Bb, & D

D

—

7 bN, ODRMin, Max & AM

a 
C & E

AM —

A or Bb, & E

E

—

8 bN, Min & ODRMax

D

A or Bb, & D

—

—

9 bN, ODRMin & Max E
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Method # OEMD data Estimated statistic Formula Assumptions

A or Bb, & E

—

—

a
OEMD records with the data in methods #6 and #7 are used to calculate the semi-empiric parameters  and .

b
Where N is not available, EN [zMax] is replaced with  which equals the median of EN[zMax] from all available N values in OEMD.

Notation: Same as Table 1.
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